Co-transport of Pesticide Acetamiprid and Silica Nanoparticles in Biochar-Amended Sand Porous Media.

نویسندگان

  • Hong Wang
  • Yuanfang Huang
  • Chongyang Shen
  • Junxue Wu
  • An Yan
  • Hongyan Zhang
چکیده

The role of biochar as a soil amendment on the transport of acetamiprid, a widely used neonicotinoid pesticide, is little known. We conducted saturated column experiments to examine cotransport of acetamiprid and silica nanoparticles (NPs) in pure and biochar-amended sands. Retention of acetamiprid was minor in the pure sand, whereas application of biochar in the sand significantly increased retention. Retention was greater at lower ionic strengths and near neutral pH values and was attributed to biodegradation and sorption through π-π interaction and pore filling. The convection-diffusion equation with inclusion of first-order sorption, desorption, and degradation well described the transport of acetamiprid in the biochar-amended sand. The simulation results show that the sorption rate did not change with pH. This is because the acetamiprid is nonionic and cannot be bonded with the biochar by protonation or deprotonation. The desorption rate was independent of variation of solution chemistry, indicating that desorption was a physical process (i.e., pore diffusion). Application of biochar in the sand had little influence on the transport of silica NPs in NaCl but caused complete attachment in CaCl. Energy dispersive X-ray spectroscopy suggested that the enhanced attachment was due to cation bridging between silica NPs and functional groups in biochar by the Ca. The co-presence of acetamiprid and silica NPs in the solutions enhanced transport of acetamiprid and NPs in the biochar-amended sand by competing for the binding sites on the biochar surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.

Although the potential application of biochar in soil remediation has been recognized, the effect of biochar on the transport of clay colloids, and accordingly the fate of colloid-associated contaminants, is unclear to date. This study conducted saturated column experiments to systematically examine transport of clay colloids in biochar-amended sand porous media in different electrolytes at dif...

متن کامل

Transport of Escherichia coli, Salmonella typhimurium, and Microspheres in Biochar-Amended Soils with Different Textures

The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has been shown to increase soil retention of agrochemicals, and recent research has indicated that biochar may be effective in increasing soil retention of bacteria. In this study we investigate the transport behavior of Escherichia coli O1...

متن کامل

Transport Characteristics of Green-Tea Nano-scale Zero Valent Iron as a Function of Soil Mineralogy

The transport characteristics of iron nanoparticles prepared with a green tea, polyphenol-rich solution, were investigated for two granular media, pure silica sand and sand coated with aluminium hydroxide. The GT-nZVI injection caused a sharp decrease in the effluent pH and increase in the redox potential, which is attributed to the presence of free Fe and polyphenols in the suspension, respect...

متن کامل

Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended wi...

متن کامل

The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads.

Biofilms are a common constituent of the subsurface and are known to influence contaminant transport; however only a few studies to date have addressed microbial controls on nanoparticle mobility in porous media. The impact of a 3-day Pantoea agglomerans biofilm on the mobility of zinc oxide (ZnO) nanoparticles was studied in column experiments containing sand and glass beads at near-neutral pH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 45 5  شماره 

صفحات  -

تاریخ انتشار 2016